OpenLink Software

Usage stats on Subfactorial

 Permalink

an Entity in Data Space: 134.155.108.49:8890

The subfactorial or left factorial, written \(!n\), is the number of ways that n objects can be arranged where no object appears in its natural position (known as "derangements.") There are many formulas for \(!n\): \begin{eqnarray*} !n &=& n! \displaystyle\sum^{n}_{i = 0} \frac{(-1)^i}{i!}\\ &=& \displaystyle\sum^{n}_{i = 0} i! (-1)^{n - i} \binom{n}{i}\\ &=& \displaystyle\frac{\Gamma(n + 1, -1)}{e}\\ &=& \left[\frac{n!}{e}ight] ext{ (only for $n > 0$)} \end{eqnarray*} In the last formula, [n] means the nearest integer to n. (It is a direct consequence of the first formula — the summation converges to \(1/e\).)

Graph IRICount
http://dbkwik.webdatacommons.org6
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Copyright © 2009-2012 OpenLink Software