OpenLink Software

Usage stats on Ψ(ψᵢ(0))

 Permalink

an Entity in Data Space: 134.155.108.49:8890

\(\psi(\psi_I(0))\) is a large countable ordinal. Michael Rathjen's ordinal collapsing function \(\psi\) is used here along with \(I\), the first inaccessible cardinal. \(\psi_I(0)\) is the omega fixed point. It is the proof-theoritic ordinal of \(\Pi_1^1- ext{TR}_0\), a susbystem of second-order arithmetic. As there is not currently a notation to define \(\psi(\psi_I(0))\) on the ordinal notations article, we define a simple notation to do this below: Let \(\Omega_0=1\), and if \(\alpha>0\), let \(\Omega_\alpha=\omega_\alpha\). \(C_0(\alpha,\beta) = \beta\) \(C(\alpha,\beta) = \bigcup_{n<\omega}C_n(\alpha,\beta)\)

Graph IRICount
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Copyright © 2009-2012 OpenLink Software