The small Veblen ordinal is the limit of the following sequence of ordinals \(\varphi(1, 0),\varphi(1, 0, 0),\varphi(1, 0, 0, 0),\varphi(1, 0, 0, 0, 0),\ldots\) where \(\varphi\) is the Veblen hierarchy as extended to arbitrary finite numbers of arguments. Using Weiermann's theta function, it can be expressed as \(\vartheta(\Omega^\omega)\). Using the Veblen hierarchy as extended to transfinitely many arguments, it is equal to \(\varphi_{\Omega^\omega}(0)\) Harvey Friedman's tree(n) function (for unlabeled trees) grows at around the same rate as \(f_{\vartheta(\Omega^\omega)}(n)\) in the fast-growing hierarchy.
| Graph IRI | Count |
|---|---|
| http://dbkwik.webdatacommons.org | 6 |