The alternating factorial of a number n is \(\sum^n_{i = 1} (-1)^{n - i} \cdot i!\), or the alternating sum of all the factorials up to n. For example, the alternating factorial of 5 is \(1! - 2! + 3! - 4! + 5!=101\).
| Graph IRI | Count |
|---|---|
| http://dbkwik.webdatacommons.org | 7 |