The alternating factorial of a number n is \(\sum^n_{i = 1} (-1)^{n - i} \cdot i!\), or the alternating sum of all the factorials up to n. For example, the alternating factorial of 5 is \(1! - 2! + 3! - 4! + 5!=101\).
| Identifier (URI) | Rank |
|---|---|
| dbkwik:resource/MPviM2O17Gb72MKI2FTLRw== | 5.88129e-14 |
| dbr:Alternating_factorial | 5.88129e-14 |