The hyperlicious function is defined as * \(h_x(a,b) = ext{hyper}(a,x + 2,b)\), * \(h_x(a,b,c,\ldots,m,n,1) = h_x(a,b,c,\ldots,n)\), and * \(h_x(a,b,c,\ldots,m,n) = h_{h_x(a,b,c,\ldots,m - 1)}(a,b,c,\ldots,m)\).
| Graph IRI | Count |
|---|---|
| http://dbkwik.webdatacommons.org | 1 |