The hyperlicious function is defined as * \(h_x(a,b) = ext{hyper}(a,x + 2,b)\), * \(h_x(a,b,c,\ldots,m,n,1) = h_x(a,b,c,\ldots,n)\), and * \(h_x(a,b,c,\ldots,m,n) = h_{h_x(a,b,c,\ldots,m - 1)}(a,b,c,\ldots,m)\).
| Identifier (URI) | Rank |
|---|---|
| dbkwik:resource/ya3VjL3PIh07S3JqsASNvg== | 5.88129e-14 |