This HTML5 document contains 5 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
n7http://dbkwik.webdatacommons.org/ontology/
dctermshttp://purl.org/dc/terms/
n5http://dbkwik.webdatacommons.org/resource/QgP6BFxm43Zr22mmwMoWaA==
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
xsdhhttp://www.w3.org/2001/XMLSchema#
n2http://dbkwik.webdatacommons.org/resource/3LiIqKPb9c7doQ7g9RMYQA==
n4http://dbkwik.webdatacommons.org/resource/0jkVQhshcEfney6Wwc4YdA==
Subject Item
n2:
rdfs:label
Davenport-Schinzel sequence
rdfs:comment
Davenport-Schinzel sequences are sequences that give rise to a hierarchy of functions that grow extremely close to linearly. An \((n,s)\) Davenport-Schinzel sequence is a sequence \(a_1,a_2,\ldots,a_m\) where \(a_i\) are integers in \([1,n]\), such that: * \(a_i eq a_{i+1}\) * There is no sequence \(i_1 < i_2 < \cdots < i_{s + 2}\) such that \(a_{i_1} = a_{i_3} = a_{i_5} = \ldots eq a_{i_2} = a_{i_4} = a_{i_6} = \ldots\).
dcterms:subject
n4: n5:
n7:abstract
Davenport-Schinzel sequences are sequences that give rise to a hierarchy of functions that grow extremely close to linearly. An \((n,s)\) Davenport-Schinzel sequence is a sequence \(a_1,a_2,\ldots,a_m\) where \(a_i\) are integers in \([1,n]\), such that: * \(a_i eq a_{i+1}\) * There is no sequence \(i_1 < i_2 < \cdots < i_{s + 2}\) such that \(a_{i_1} = a_{i_3} = a_{i_5} = \ldots eq a_{i_2} = a_{i_4} = a_{i_6} = \ldots\). Define \(\lambda_s(n)\) as the length of the longest \((n,s)\) Davenport-Schinzel sequence. Then \(\lambda_1(n) = n\), \(\lambda_2(n) = 2n - 1\), \(\lambda_3(n) = \Theta(n\alpha(n))\) where \(\alpha\) is the inverse Ackermann function. A large number function can be extracted by defining \( ext{DS}_3(n) = \min\{m : \lambda_3(m) \geq mn\}\).