This HTML5 document contains 10 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dctermshttp://purl.org/dc/terms/
n3http://dbkwik.webdatacommons.org/ontology/
n11http://dbkwik.webdatacommons.org/resource/0nLIgBKmA7PtkZCZ4r3H_A==
rdfshttp://www.w3.org/2000/01/rdf-schema#
n7http://dbkwik.webdatacommons.org/resource/Wwv8l1ZDfeKyVPMVSFYtug==
n2http://dbkwik.webdatacommons.org/resource/DnbhwIP_VUYjAyFH5K2G8A==
n9http://dbkwik.webdatacommons.org/resource/zjm9K0QsqmaX1I99sUZtJA==
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n12http://dbkwik.webdatacommons.org/resource/JFpDXezGiJYM-I1D4HPCaQ==
n10http://dbkwik.webdatacommons.org/resource/Gz_FzI10WvHEwbh3aBvz0w==
xsdhhttp://www.w3.org/2001/XMLSchema#
n6http://dbkwik.webdatacommons.org/resource/K3du-gHY2DJtaohKOuwTWQ==
n13http://dbkwik.webdatacommons.org/resource/Wjxy8DFpJMrNUFCHM3irHQ==
n5http://dbkwik.webdatacommons.org/ru.science/property/
Subject Item
n7:
n3:wikiPageDisambiguates
n2:
Subject Item
n2:
rdfs:label
Мембранный потенциал
rdfs:comment
thumb|350px|Различия в концентрации ионов на противоположных сторонах клеточной мембраны приводят к напряжению, названному мембранным потенциалом. Много ионов имеют градиент концентрации поперек мембраны, включая калий (K+), который является в высокой внутренней части и низкой концентрации вне мембраны. Натрий (Na+) и хлорид (Замкнутый–) ионы - при высоких концентрациях во внеклеточной области, и низких концентрациях во внутриклеточных областях. Эти градиенты концентрации обеспечивают потенциальную энергию вести формирование мембранного потенциала. Это напряжение установлено, когда мембрана имеет проходимость к одному или более ионам. В самом простом случае, иллюстрированном здесь, если мембрана выборочно водопроницаема к калию, они положительно обвиняли, что ионы могут распространить вниз
dcterms:subject
n9: n11: n12: n13:
n5:wikiPageUsesTemplate
n6: n10:
n3:abstract
thumb|350px|Различия в концентрации ионов на противоположных сторонах клеточной мембраны приводят к напряжению, названному мембранным потенциалом. Много ионов имеют градиент концентрации поперек мембраны, включая калий (K+), который является в высокой внутренней части и низкой концентрации вне мембраны. Натрий (Na+) и хлорид (Замкнутый–) ионы - при высоких концентрациях во внеклеточной области, и низких концентрациях во внутриклеточных областях. Эти градиенты концентрации обеспечивают потенциальную энергию вести формирование мембранного потенциала. Это напряжение установлено, когда мембрана имеет проходимость к одному или более ионам. В самом простом случае, иллюстрированном здесь, если мембрана выборочно водопроницаема к калию, они положительно обвиняли, что ионы могут распространить вниз градиент концентрации к внешней стороне ячейки, оставляя позади неданные компенсацию отрицательные обвинения. Это разделение обвинений-, каков вызывает мембранный потенциал. Отметьте, что оптовые решения любой стороны мембраны electo-нейтральны. Аналогично, система в целом нейтральна гальваностереотипом. "Неданные компенсацию" положительные обвинения вне ячейки, и неданных компенсацию отрицательных обвинений в ячейке, физически выстраиваются в линию на мембранной поверхности и привлекают друг друга поперек мембраны. Таким образом, мембранный потенциал физически расположен только в непосредственной близости мембраны. Это - разделение этих обвинений поперек них мембрана, которая является основанием мембранного напряжения. Отметьте также, что эта диаграмма - только приближение ионных вкладов в мембранный потенциал. Другие ионы, включая натрий, хлорид, кальций и другие играют более незначительную роль, даже при том, что они имеют сильные градиенты концентрации, потому что они более ограничили проходимость чем калий. Ключ: Синие пятиугольники - ионы натрия; Фиолетовые площади - ионы калия; Желтые круги - ионы Choloride; Оранжевые прямоугольники - Анионы (они являются результатом разнообразия источников, включая белки). Большая фиолетовая структура со стрелкой представляет трансмембранный канал калия и руководство чистого движения калия.Мембранный потенциал (реже - трансмембранный потенциал) - разность электрических потенциалов между растворами электролитов, разделенных проницаемой мембраной. Роль мембраны в первую очередь состоит в создании препятствия к смешиванию растворов, расположенных по её разные стороны. Мембрана может быть либо электрически индифферентной, диффузия через которую возможна для всех частиц, имеющихся в растворе; либо полупроницаемой (активной), через такую мембрану некоторые частицы пройти не могут (см. осмос). * Равновесный мембранный потенциал в начале ХХ века часто именовали потенциалом Доннана