This HTML5 document contains 5 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
n8http://dbkwik.webdatacommons.org/ontology/
dctermshttp://purl.org/dc/terms/
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
xsdhhttp://www.w3.org/2001/XMLSchema#
n7http://dbkwik.webdatacommons.org/resource/G84fGK6_OyVaYaTj81TRWw==
n5http://dbkwik.webdatacommons.org/resource/tpGQN9Sgg0XXYBbBz5zS8g==
n4http://dbkwik.webdatacommons.org/ru.science/property/
n2http://dbkwik.webdatacommons.org/resource/QgG6X2CDI5syAQkXR-KgZQ==
Subject Item
n2:
rdfs:label
Радиус Шварцшильда
rdfs:comment
Радиус Шварцшильда (иногда называемый гравитационный радиус[1]) представляет собой характерный радиус, определенный для любого физического тела, обладающего массой. Для заданной массы, это радиус, до которого нужно стиснуть массу чтобы она сколлапсировала в гравитационную сингулярность. Этот термин используется в физике и астрономии, в особенности в теории гравитации и общей теории относительности. На важность этого понятия впервые обратил внимание в 1916 году Шварцшильд, который нашел точное решение уравнений общей теории относительности вокруг сферически-симметричной невращающейся массы (см. метрика Шварцшильда).
dcterms:subject
n7:
n4:wikiPageUsesTemplate
n5:
n8:abstract
Радиус Шварцшильда (иногда называемый гравитационный радиус[1]) представляет собой характерный радиус, определенный для любого физического тела, обладающего массой. Для заданной массы, это радиус, до которого нужно стиснуть массу чтобы она сколлапсировала в гравитационную сингулярность. Этот термин используется в физике и астрономии, в особенности в теории гравитации и общей теории относительности. На важность этого понятия впервые обратил внимание в 1916 году Шварцшильд, который нашел точное решение уравнений общей теории относительности вокруг сферически-симметричной невращающейся массы (см. метрика Шварцшильда). Радиус Шварцшильда для некоторого физического тела пропорционален его массе. Радиус Шварцшильда для тела с массой Земли равен 9 мм, для Солнца ≈ 3 км. Физическое тело, радиус которого меньше его радиуса Шварцшильда, превращается в черную дыру. Поверхность сферы Шварцшильдовского радиуса представляет собой горизонт событий для невращающегося тела (для вращающейся черной дыры, горизонт событий имеет форму эллипсоида, и радиус Шварцшильда дает оценку размеров этого эллипсоида.) Радиус Шварцшильда для сверхмассивной черной дыры в центре нашей галактики равен примерно 7.8 миллионов км. Радиус Шварцшильда сферы, равномерно заполненной веществом с плотностью, которая равна критической плотности, совпадает с радиусом наблюдаемой Вселенной.