This HTML5 document contains 4 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
n6http://dbkwik.webdatacommons.org/ontology/
n2http://dbkwik.webdatacommons.org/resource/Z0p0dOn-E3Tgp6vxXlOwyw==
n5http://dbkwik.webdatacommons.org/resource/GFwG6WjN3uFuGwbUnzzxdA==
n4http://dbkwik.webdatacommons.org/resource/wrSW3IFDLFaMLleL1_IkXQ==
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
xsdhhttp://www.w3.org/2001/XMLSchema#
Subject Item
n4:
n5:
n2:
Subject Item
n2:
rdfs:label
Квантовая суперпозиция
rdfs:comment
Ква́нтовая суперпози́ция (когерентная суперпозиция) — это суперпозиция состояний, которые не могут быть реализованы одновременно с классической точки зрения, это суперпозиция альтернативных (взаимоисключающих) состояний. Принцип существования суперпозиций состояний обычно называется в контексте квантовой механики просто принципом суперпозиции. Из принципа суперпозиции также следует, что все уравнения на волновые функции (например, уравнение Шрёдингера) в квантовой механике должны быть линейными.
n6:abstract
Ква́нтовая суперпози́ция (когерентная суперпозиция) — это суперпозиция состояний, которые не могут быть реализованы одновременно с классической точки зрения, это суперпозиция альтернативных (взаимоисключающих) состояний. Принцип существования суперпозиций состояний обычно называется в контексте квантовой механики просто принципом суперпозиции. Если функции и являются допустимыми волновыми функциями, описывающими состояние квантовой системы, то их линейная суперпозиция, , также описывает какое-то состояние данной системы. Если измерение какой-либо физической величины в состоянии приводит к определённому результату , а в состоянии — к результату , то измерение в состоянии приведёт к результату или с вероятностями и соответственно. Из принципа суперпозиции также следует, что все уравнения на волновые функции (например, уравнение Шрёдингера) в квантовой механике должны быть линейными. Любая наблюдаемая величина (например, положение, импульс или энергия частицы) является собственным значением эрмитова линейного оператора, соответствующим конкретному собственному состоянию этого оператора, то есть определённой волновой функции, действие оператора на которую сводится к умножению на число — собственное значение. Линейная комбинация двух волновых функций — собственных состояний оператора также будет описывать реально существующее физическое состояние системы. Однако для такой системы наблюдаемая величина уже не будет иметь конкретного значения, и в результате измерения будет получено одно из двух значений с вероятностями, определяемыми квадратами коэффициентов (амплитуд), с которыми базисные функции входят в линейную комбинацию. (Разумеется, волновая функция системы может быть линейной комбинацией и более чем двух базисных состояний, вплоть до бесконечного их количества). Важными следствиями квантовой суперпозиции являются различные интерференционные эффекты (см. опыт Юнга, дифракционные методы), а для составных систем — зацепленные состояния. Популярный пример парадоксального поведения квантовомеханических объектов с точки зрения макроскопического наблюдателя — кот Шрёдингера, который может представлять собой квантовую суперпозицию живого и мёртвого кота. Впрочем, достоверно ничего не известно о применимости принципа суперпозиции (как и квантовой механики вообще) к макроскопическим системам.