This HTML5 document contains 19 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
n5http://dbkwik.webdatacommons.org/military/property/
dctermshttp://purl.org/dc/terms/
n3http://dbkwik.webdatacommons.org/ontology/
n2http://dbkwik.webdatacommons.org/resource/zlJJv1prPns0QvOpj-kKPw==
n11http://dbkwik.webdatacommons.org/resource/b_vphsOeRpKcR6oud_TbrA==
n14http://dbkwik.webdatacommons.org/resource/CtbfVERA8rrkkb3qmAFx5A==
rdfshttp://www.w3.org/2000/01/rdf-schema#
n17http://dbkwik.webdatacommons.org/resource/0CUW6saOy3rivYGOiWhP7g==
n15http://dbkwik.webdatacommons.org/resource/Ywm0uFeg09JjxxpnMJMNqA==
n20http://dbkwik.webdatacommons.org/resource/gVjOfGqqNyJXI9D4kCZCsQ==
n8http://dbkwik.webdatacommons.org/resource/moqrMNL4SJajOiOX-1Dwuw==
n22http://dbkwik.webdatacommons.org/resource/Q-ua12k0_tpiO1lgn2YykQ==
n23http://dbkwik.webdatacommons.org/resource/BG_u5ZJpDudPXwesJBNgsg==
n13http://dbkwik.webdatacommons.org/resource/pTEKXoXwy_QJD-cbbKl3EQ==
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n12http://dbkwik.webdatacommons.org/resource/OhPb_yCa9j00-PQJaDmpcg==
n16http://dbkwik.webdatacommons.org/resource/sk6DMkrY7X7v0ApXkASC0A==
n21http://dbkwik.webdatacommons.org/resource/sgy-37hYEWSi0ff69o00Qg==
n7http://dbkwik.webdatacommons.org/resource/AaGpNMKXeCEx6k1ovZIRVg==
owlhttp://www.w3.org/2002/07/owl#
n10http://dbkwik.webdatacommons.org/resource/ICIaxzMGQXa8MECynxQ4cg==
n6http://dbkwik.webdatacommons.org/resource/NN29OgvYlv_bY2aT6fF9gg==
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/
Subject Item
n2:
rdfs:label
German tank problem
rdfs:comment
In the statistical theory of estimation, the problem of estimating the maximum of a discrete uniform distribution from sampling without replacement, is known, in the English-speaking world, as the German tank problem, due to its application in World War II to the estimation of the number of German tanks. The analyses illustrate the difference between frequentist inference and Bayesian inference.
owl:sameAs
dbr:German_tank_problem
dcterms:subject
n10: n12: n15: n20: n22:
n5:wikiPageUsesTemplate
n6: n7: n8: n11: n13: n14: n16: n17: n21: n23:
n3:abstract
In the statistical theory of estimation, the problem of estimating the maximum of a discrete uniform distribution from sampling without replacement, is known, in the English-speaking world, as the German tank problem, due to its application in World War II to the estimation of the number of German tanks. The analyses illustrate the difference between frequentist inference and Bayesian inference. Estimating the population maximum based on a single sample yields divergent results, while the estimation based on multiple samples is an instructive practical estimation question whose answer is simple but not obvious.